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Abstract. The ab initio pseudopotential method within the local density functional theory and virtual-
crystal approximation is used to study the band gap of the Si1−x−yGexCy (y ≤ 0.09) alloys on a Ge(001)
substrate. The heterojunction discontinuities are also investigated in the framework of the average bond
energy theory in conjunction with the deformation potential method. The calculated results show that the
energy gap still remains indirect and only a small amount of C could cause the energy gap to be shrunk
significantly. The top of the valence bands of the strained Si1−x−yGexCy alloys on Ge(001) is significantly
lifted and even could be greatly higher than that of Ge by the addition of small amounts of carbon. The
trends of our results are consistent with other theoretical data.

PACS. 71.22.+i Electronic structure of liquid metals and semiconductors and their alloys – 73.90.+f Other
topics in electronic structure and electrical properties of surfaces, interfaces, and thin films – 71.15.Hx
Pseudopotential method – 71.15.Mb Density functional theory, local density approximation

1 Introduction

The possibilities of energy band engineering in SiGe alloys
have been recently extended with the incorporation of an-
other isovalent element such as carbon [1–8]. Carbon in
substitutional sites is expected to greatly modify the band
structure. Although these alloys are generally grown on Si
substrates, there is increasing interest in film growth on Ge
for fundamental studies of strained-layer epitaxy and for
investigation of epitaxial Ge devices which take advantage
of the narrower energy gap of Ge, high hole mobilities and
high solubility limits for p-type dopants [8,9]. However,
the Si1−x−yGexCy alloys on Ge substrates are difficult to
grow and analyze. The experimental data are largely un-
known. For this reason, theoretical predictions are a useful
first step towards material growth and device design. We
are cognizant of the well-known local density approxima-
tion deficiency concerning band-gap calculations (the un-
derestimate by 30%–50% of the experimental band gap in
many semiconductors), but it is important to realize that
the local density approximation can reproduce trends in
the band structure fairly successfully and it is most useful
in predicting trends as composition is varied [5,10].

2 Calculation method

Our calculations are performed with the ab initio
pseudopotential method [11] within the local density
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functional theory and the virtual-crystal approxima-
tion [12]. The pseudopotential fitted coefficients of the Si,
Ge and C elements by Bachelet et al. [11] are adopted.
The generation of the Si1−x−yGexCy (y ≤ 9%) alloy pseu-
dopotential is performed according to the prescription of
Nelson et al. [12]. The Hedin-Lundqvist form of exchange-
correlation potential is adopted [13]. The plane-wave basis
is set up to a kinetic energy cut-off of 18 Ry. Eleven spe-
cial k points are used during the self-consistent iterations.
Every 5% Ge content is taken as a sampling point from
5% to 95% for a certain C fraction.

Our calculated equilibrium lattice constants for C, Si
and Ge elements are aC = 6.73 a.u., aSi = 10.19 a.u. and
aGe = 10.57 a.u., respectively, which are in good agree-
ment with the existing data (i.e., aC = 6.77 a.u. [14], aSi =
10.20 a.u. [15] and aGe = 10.60 a.u. [15]). The lattice con-
stant of an unstrained Si1−x−yGexCy alloy is determined
according to Vegard’s rule:

a0(x, y) = (1− x− y)aSi + xaGe + yaC. (1)

As the Si1−x−yGexCy alloys pseudomorphically grow on
Ge(001), the lattice constant parallel to the interface (i.e.,
a‖(x, y)) is taken to be the Ge lattice constant and the
lattice constant perpendicular to the interface (i.e., a⊥(x,
y)) is allowed to relax due to the strain produced by Si
and C in the alloys. The expression for a⊥(x, y) is given
as follows [16]:

a⊥(x, y) = a0(x, y)− 2
c12(x, y)
c11(x, y)

[aGe − a0(x, y)], (2)
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where c12(x, y) and c11(x, y) indicate the elastic constants
of the alloys which are determined by a linear interpola-
tion of the experimental values [14] of the corresponding
elemental materials.

As is well known, the band gap given by the ab initio
self-consistent calculation based on density functional the-
ory within the local density approximation is generally
smaller than the experimental result. It is assumed that
the correction to the band gap can be estimated by
Vegard’s rule, i.e. [6],

∆(Si1−x−yGexCy)s = (1−x−y)∆(Si)s+x∆(Ge)+y∆(C)s,
(3)

where the subscript s indicates strain. The strain effect
on the band-gap correction for C is neglected because the
band gap for C grown on Ge could not be found. The
correction values for Si, Ge and C are taken to be 0.65, 0.46
and 1.55 eV, respectively, in order to match the existing
data {Eg(Si)s = 0.51 eV [17], Eg(Ge) = 0.74 eV [7] and
Eg(C) = 5.5 eV [7]}

The average bond energy is used as an energy reference
to determine the discontinuity between the two Ev [18]:

∆Eν = (Eνalloy − Emalloy)− (EνGe −EmGe), (4)

where Em is the average bond energy which is defined as:

Em =
1

8N

8∑
n=1

∑
k

En(k), (5)

where n = 1-4 are the four highest valence bands, n = 5-8
are the four lowest conduction bands, N is the number of
unit cells and En(k) is the eigenvalue of the nth band at
the k point.

In strained materials, the spin-orbit and strain split-
tings will produce a total splitting of the valence band.
According to the deformation potential method [19], the
shifts of the heavy hole band v2, light hole band v1 and
spin-orbit splitting band v3 with respect to their weighted
average can be expressed as [16]:

∆Ev2 = ∆0/3− δE001/2, (6)
∆Ev1 = −∆0/6 + δE001/4

+[∆2
0 +∆0δE001 + 9(δE001)2/4]1/2/2, (7)

∆Ev3 = −∆0/6 + δE001/4

−[∆2
0 +∆0δE001 + 9(δE001)2/4]1/2/2, (8)

where ∆0 is the spin-orbit splitting and δE001 is the linear
splitting of the multiplet. In our calculations, the heavy
hole band v2 and spin-orbit splitting band v3 are still de-
generate and separated from the light hole band v1 by
−3
2 δE001 for that the strain effects are taken into account

in the absence of spin-orbit splitting effect. In (6-8), the
shifts without ∆0 should be discounted. So the shifts of
the valence band maximums in the present calculations
are given by:

∆Ev2 = ∆0/3, (9)
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Fig. 1. Dependence of band gap on the Ge fraction
for Si1−x−yGexCy alloy layers pseudomorphically grown on
Ge(001), where y0, y1, y3, y5, y7 and y9 indicate the
data curves of Si1−xGex, Si0.99−xGexC0.01, Si0.97−xGexC0.03,
Si0.95−xGexC0.05, Si0.93−xGexC0.07 and Si0.91−xGexC0.09, re-
spectively. The dotted line indicates the crossover from a ∆
gap to an L gap.

∆Ev1 = −∆0/6− 3δE001/4

+[∆2
0 +∆0δE001 + 9(δE001)2/4]1/2/2, (10)

∆Ev3 = −∆0/6 + 3δE001/4

−[∆2
0 +∆0δE001 + 9(δE001)2/4]1/2/2. (11)

3 Results and discussion

3.1 Energy gap of the strained Si1−x−yGexCy alloys on
Ge(001)

The corrected band gap as a function of the Ge fraction
is shown in Figure 1, where the dotted line corresponds to
the crossover from a ∆ gap to an L gap as the Ge frac-
tion increases. It is found that all the energy gaps of the
strained Si1−x−yGexCy alloys on Ge(001) are indirect and
most of them have ∆ character. For the Si1−xGex system,
crossover from a ∆ gap to an L gap at ∼88% Ge is pre-
dicted which is in good agreement with that of [16]. The L
character nearly disappears when y > 0.03. Furthermore
it can be seen from the figure that the variational region of
the energy gap of the alloys falls within the ∆-L crossover
of the Si1−xGex alloys. The band gap decreases signifi-
cantly with increasing y for constant Ge fraction. For a
given carbon concentration, the ∆ gap increases whereas
the L gap decreases as the Ge fraction increases.

Figure 2 shows the energy gap depending on the lattice
mismatch, where the lattice mismatch is defined as (aGe-
axy)/aGe. It can be seen from Figure 2 that all the lattice
mismatches are larger than zero, that is the lattice con-
stants of the unstrained Si1−x−yGexCy alloys are smaller
than that of Ge, so the strains of the Si1−x−yGexCy al-
loys on Ge(001) are tensile. The calculated result indicates
that the ∆ gap is significantly shrunk by the presence of
the tetragonal distortion in the alloy layers, whereas the
L gap increases with increasing lattice mismatch for con-
stant C fraction. For a certain lattice mismatch, both the
∆ and L gaps decrease monotonically as y increases from



Liqing Wu et al.: Ab initio study of electronic structure of strained Si1−x−yGexCy/Ge(001) 495

0.00 0.02 0.04 0.06

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y9
y7

y5

y3
y1

y0

E
n

e
rg

y 
g

a
p

 (
e

V
)

Lattice mismatch

Fig. 2. Dependence of energy gap on the lattice mismatch
for Si1−x−yGexCy alloy layers pseudomorphically grown on
Ge(001). The symbols are indicated in the same way as in
Figure 1.
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Fig. 3. Top of valence bands and bottom of conduction bands
as functions of Ge fraction in the strained Si1−x−yGexCy al-
loys, matched to a Ge(001) substrate. All energies are referred
to the top of the valence bands in Ge and the symbols are
indicated in the same way as in Figure 1.

0% to 9%. The trend of the band gap is compared with
that of [7] in the case of tensile strain, and good agreement
is found for the ∆ gap.

3.2 Heterostructure discontinuities in the tensile-strain
Si1−x−yGexCy/Ge(001)

It is found from the calculated results that the highest
tops of the valence bands of the strained Si1−x−yGexCy
alloys on Ge(001) all belong to light hole states because
the tetragonal distortions of the alloys are caused by ten-
sile stress. Due to the addition of small amounts of carbon,
it is easy to obtain not only type-II but also type-I Ge de-
vices by suitably modulating the alloy concentrations.

The top of the valence bands and bottom of the con-
duction bands as functions of the Ge fraction are shown
in Figure 3, where the dashed line indicates the top of the
valence bands in Ge. It is shown that both the top of the
valence bands and the bottom of the conduction bands
increase monotonically with increasing x for constant y
except for the bottom of the conduction bands with L
character. The top of the valence bands increases whereas
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Fig. 4. Top of valence bands and bottom of conduction bands
as functions of lattice mismatch in the strained Si1−x−yGexCy
alloys, matched to a Ge(001) substrate. The figure is plotted
in the same way as in Figure 3.

the bottom of the conduction bands decreases as y varies
from 0% to 9% for a certain Ge fraction.

The dependance of the heterojunction discontinuities
on the lattice mismatch are shown in Figure 4. It is inter-
esting to see from Figure 4 that the bottom of the con-
duction bands with ∆ character increases monotonically
with increasing y for a given lattice mismatch. This trend
is opposite to that of Figure 3. Except for the bottom of
the conduction bands with L character, both the bottom
of the conduction bands and the top of the valence bands
decrease monotonically as the lattice mismatch increases
and the C fraction is held fixed. The trends of the above
results are in good agreement with those of the tensile-
strain Si1−x−yGexCy/Si (001) system in [7]. To further
test the correction of our results, the valence-band offsets
of Ge/Si(001) and Si/Ge(001) heterostructures have been
calculated. The values are 0.64 and 0.19 eV, respectively,
and they are in acceptable agreement with the experimen-
tal data of 0.74±0.13 and 0.17±0.13 eV [20].

4 Conclusion

Energy gap and heterojunction discontinuities of pseu-
domorphic Si1−x−yGexCy alloys grown on Ge(001) have
been investigated with ab initio calculations. An indirect
∆ minimum is indicated for most of the alloys and the
band gap is shrunk significantly when small amounts of
C are added to SiGe alloys in substitutional sites. A sig-
nificant shift is found in the valence and conduction band
energies with the C fraction. Both type-II and type-I band
alignment can be realized by suitably adjusting the alloy
concentrations. Our goal is to provide some useful infor-
mation for the further theoretical and experimental stud-
ies of the Si1−x−yGexCy system.
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